An RBF-Based Pattern Recognition Method by Competitively Reducing Classification-Oriented Error
نویسندگان
چکیده
This paper describes an optimized training approach of radial basis function (RBF) classification by reducing a proposed classification-oriented error function. The training approach consists of two distinguished properties. First, radial basis functions, feature weights, and output weights can be updated iteratively; Second, it intrinsically distinguishes different learning contribution from training samples, which enables a large amount of learning from constructive samples, limited learning from outlier ones, and no learning at all from well trained ones.
منابع مشابه
Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملImproved Hidden Markov Models Speech Recognition Using Radial Basis Function Networks
A high performance speaker-independent isolated-word hybrid speech recognizer was developed which combines Hidden Markov Models (HMMs) and Radial Basis Function (RBF) neural networks. In recognition experiments using a speaker-independent E-set database, the hybrid recognizer had an error rate of 11.5% compared to 15.7% for the robust unimodal Gaussian HMM recognizer upon which the hybrid syste...
متن کاملImproved Hidden Markov Model Speech Recognition Using Radial Basis Function Networks
A high performance speaker-independent isolated-word hybrid speech recognizer was developed which combines Hidden Markov Models (HMMs) and Radial Basis Function (RBF) neural networks. In recognition experiments using a speaker-independent E-set database, the hybrid recognizer had an error rate of 11.5% compared to 15.7% for the robust unimodal Gaussian HMM recognizer upon which the hybrid syste...
متن کاملEfficient training of RBF neural networks for pattern recognition
The problem of training a radial basis function (RBF) neural network for distinguishing two disjoint sets in R(n) is considered. The network parameters can be determined by minimizing an error function that measures the degree of success in the recognition of a given number of training patterns. In this paper, taking into account the specific feature of classification problems, where the goal i...
متن کامل